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ABSTRACT

It is usually believed that angular aperture of seismic data

should be at least 20° to allow estimation of the subsurface

anisotropy. Although this is certainly true for reflection data,

for which anisotropy parameters are inverted from the stack-

ing velocities or the nonhyperbolic moveout, traveltimes of

direct P- and S-waves recorded in typical downhole micro-

seismic geometries make it possible to infer seismic aniso-

tropy in angular apertures as narrow as about 10°. To

ensure the uniqueness of such an inversion, it has to be per-

formed in a local coordinate frame tailored to a particular

data set. Because any narrow fan of vectors is naturally char-

acterized by its average direction, we choose the axes of the

local frame to coincide with the polarization vectors of three

plane waves corresponding to such a direction. This choice

results in a significant simplification of the conventional

equations for the phase and group velocities in anisotropic

media and makes it possible to predict which elements of the

elastic stiffness tensor are constrained by the available data.

We illustrate our approach on traveltime synthetics and then

apply it to perforation-shot data recorded in a shale-gas field.

Our case study indicates that isotropic velocity models are

inadequate and accounting for seismic anisotropy is a pre-

requisite for building a physically sound model that explains

the recorded traveltimes.

INTRODUCTION

Much of the progress in the estimation of seismic anisotropy and

the building of anisotropic velocity models can be attributed to the

choice of appropriate parametrization of the stiffness tensor. Such a

parametrization is usually designed to capture the influence of

elastic anisotropy on a seismic signature in question and to

facilitate the inversion of anisotropy-related quantities from that

signature. The most well-known example of reparameterizing the

stiffnesses is Thomsen (1986) notation that identifies the combina-

tions of stiffness coefficients of vertically transversely isotropic

(VTI) media obtainable in a unique fashion from seismic velocities

routinely measured in the exploration practice.

Thomsen parameters are no longer convenient when data contain

both kinematic and polarization signatures. The data of this kind,

for instance, components of the slowness vectors and directions of

the particle motions, are recorded in vertical seismic profiling (VSP)

surveys (Zheng and Pšenčík, 2002; Xiao and Leaney, 2010). To

estimate seismic anisotropy in the vicinity of downhole geophones

from such measurements, one has to define a different set of

Thomsen-style parameters, specifically, the one that governs the

dependence of the slowness component along a borehole on the

direction of the polarization vector and can be unambiguously

inverted from this dependence (Grechka and Mateeva, 2007).

Here we examine the same anisotropic parameter-estimation

problem but for geometries encountered in downhole microseismic

monitoring. The main objective of acquiring microseismic

surveys in tight-gas and shale-gas fields is to delineate hydraulic

fractures, which are artificially created to make production from

low-permeability formations economically viable (e.g., Maxwell,

2010; Maxwell et al., 2010). The shapes and orientations of hydrau-

lic fractures are inferred from locations of microseismic events trig-

gered in the course of hydraulic well stimulations. Clearly, a

velocity model is required to locate the microseismicity. This model

is conventionally derived from sonic logs and traveltimes of the

direct P- and S-waves excited by perforation shots and recorded

by geophones placed in an adjacent borehole (e.g., Warpinski

et al., 2005; Pei et al., 2009). Hence, the goal of our study is to

invert the observed perforation-shot times for a velocity model.
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Although one might think that Thomsen-type parameterization

could be helpful in estimating seismic anisotropy from such travel-

time data, this is seldom the case. Two typical reasons are narrow

angular apertures of ray trajectories recorded by geophones placed

in a single well and oblique orientations of those trajectories with

respect to layering or principal stress directions, which might be

taken as plausible symmetry elements for the elastic properties of

the formation. As a consequence of the narrow ray coverage, an

analog of the stacking velocity is difficult to measure and, therefore,

the δ-type parameters governing the P-wave normal-moveout veloc-

ities are poorly constrained. Also, the symmetry-direction velocities

used in all Thomsen-style notations lose their significance because

the rays from perforation shots generally do not propagate in the

vicinity of the symmetry directions.

To resolve these issues and infer anisotropy from perforation-shot

data, we propose a strategy that consists of (1) finding a limited

subset of the stiffness coefficients that govern the velocities of

waves recorded in a given narrow fan of directions and (2) estimat-

ing only those particular stiffnesses while leaving the other, not as

tightly constrained stiffness components, undetermined. We begin

the paper by discussing a coordinate transform that identifies the

stiffness coefficients that should be targeted in the inversion, con-

firm our analytical findings on ray-tracing synthetics, and apply the

developed methodology to perforation-shot data from a shale-gas

field in the continental United States.

THEORY

Statement of the problem

Consider three plane body waves that have the same unit wave-

front normal n (such waves are termed isonormal) and propagate in

a homogeneous anisotropic medium specified by the density-

normalized stiffness tensor c. The phase velocities VQ (Q ¼ 1; 2; 3)

and the polarization vectors UQ of these waves can be found from

the Christoffel equation (e.g., Auld, 1973; Červený, 2001)

ðcijklnjnk − V2
QδilÞUlQ ¼ 0; ði ¼ 1; 2; 3Þ; (1)

where δil is the 3 × 3 identity matrix (the so-called Kronecker

delta), the subscript Q ¼ 1; 2; 3 or Q ¼ P; S1; S2 is used to denote

thewave type (P-, fast shear, or slow shear), and thewaves are sorted

in accordance with inequalities V1 ≥ V2 ≥ V3 for the phase veloci-

ties. Hereinafter, we assume summation from 1 to 3 with respect

to all repeating lowercase roman indexes and no summation with

respect to uppercase ones.

The group-velocity vectors gQ of plane waves are given by (e.g.,

Auld, 1973; Červený, 2001)

gjQ ¼ cijklUiQpkQUlQ; ðj;Q ¼ 1; 2; 3Þ; (2)

where

pQ ¼ n∕VQ (3)

are the slowness vectors. The (scalar) group velocities are defined as

gQ ¼ jgQj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gQ · gQ

p
: (4)

Suppose we compute gQðnÞ from equations 1–4 for a set of the

wavefront normals n ∈ Ω (Figure 1). We would like to know which

components of tensor c are constrained by velocities VQ or gQ, espe-

cially when the directions of vectors n compose a narrow fan Ω.

Examples

A solution to the problem posed above appears to depend on the

orientation of fan Ω with respect to the symmetry elements of a

given anisotropic solid. Let us illustrate this statement with two sim-

ple examples, for which we take an orthorhombic medium that has

Tsvankin’s (1997) coefficients VP0 ¼ 3 km∕s, VS0 ¼ 1.3 km∕s,

ϵð1Þ ¼ 0.4, ϵð2Þ ¼ 0.2, δð1Þ ¼ 0.1, δð2Þ ¼ 0.3, δð3Þ ¼ −0.2,

γð1Þ ¼ 0.15, and γð2Þ ¼ −0.2 or the density-normalized stiffness

matrix (in km2∕s2)

c ¼

0

B
B
B
B
B
B
@

12:600 5.272 7.949 0 0 0

5.272 16:200 2.511 0 0 0

7.949 2.511 9.000 0 0 0

0 0 0 3.662 0 0

0 0 0 0 1.690 0

0 0 0 0 0 2.197

1

C
C
C
C
C
C
A

:

(5)

Matrix 5 represents stiffness tensor c in Voigt notation, which is

defined by substitutions 11 → 1, 22 → 2, 33 → 3, 23 → 4,

13 → 5, and 12 → 6 for the pairs of indexes ðijÞ and ðklÞ of

tensor cijkl.

In our first example, we choose a set of the wavefront normals

n ¼ ½sin θ1 cos θ2; sin θ1 sin θ2; cos θ1� (6)

whose polar angles θ1 and azimuths θ2 belong to the fan

Ω ¼ ½89° ≤ θ1 ≤ 91°;−1° ≤ θ2 ≤ þ1°�: (7)

Because the directions of n within Ω concentrate in a close vicinity

of the axis x1, either velocities VQ or gQ constrain three elements

c11, c55, and c66 of the stiffness matrix 5. This follows from

equations 1–4, which result in equalities V1 ¼ g1 ¼
ffiffiffiffiffiffi
c11

p
, V2 ¼

g2 ¼
ffiffiffiffiffiffi
c66

p
, and V3 ¼ g3 ¼

ffiffiffiffiffiffi
c55

p
for n ¼ ½1; 0; 0�. If velocities of

one wave mode (for instance, slow S-wave) are unavailable, the cor-

responding stiffness coefficient (c55, in this particular example)

cannot be determined. Whether or not it is possible to estimate

x3

x1

x2

US2

UP

n

US1

Ω

Figure 1. Fan Ω of wave-propagation directions in anisotropic
medium.
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other stiffness components from the velocities measured for direc-

tions n in fan 7 requires further investigation; this issue is

addressed below.

In our second example, we change fan 7 to

Ω ¼ ½44° ≤ θ1 ≤ 46°; 44° ≤ θ2 ≤ 46°�: (8)

If we now substitute the wavefront normals n (equation 6) whose

directions are given by angles 8 into the Christoffel equation 1, all

nonzero stiffness elements in matrix 5 also appear in the

Christoffel matrix Γil ≡ cijklnjnk ði; l ¼ 1; 2; 3Þ. Such a result sug-

gests that the phase velocities might depend on all nine orthorhom-

bic cIJs, rather than on their small subset, which was the case in the

previous example. Switching from the stiffnesses to Tsvankin’s

(1997) notation leads to a similar conclusion. Indeed, the weak

anisotropy approximation of the P-wave phase velocity VP given

by equations 1.107–1.109 in Tsvankin (2001) contains five aniso-

tropy coefficients: ϵð1Þ, ϵð2Þ, δð1Þ, δð2Þ, and δð3Þ multiplied by

comparable trigonometric factors, which range from 1∕16 to 3∕16

for θ1 ¼ θ2 ¼ 45°. Hence, all five anisotropy coefficients influence

VP in a significant manner. Their estimation from the P-wave veloc-

ities in the examined fan Ω (equation 8), however, is likely to be

ambiguous.

Singular value decomposition

The qualitative assessment of the uniqueness of the inversion

made in the previous section can be quantified by computing the

Frechét derivatives FV ≡ ½∂VQ∕∂cIJ � and F g ≡ ½∂gQ∕∂cIJ � of the
velocities with respect to the stiffness components. Matrices, in

which derivatives with respect to each cIJ form the column-vectors,

are derived in Appendix A. Applying the SVD to either matrix FV

or F g, we represent it as the product of three matrices: a column-

orthogonal matrix u, a diagonal matrix s, whose positive or zero

elements known as the singular values are conventionally arranged

in the descending order, and the transpose of an orthogonal eigen-

vector matrix w (e.g., Press et al., 2003):

F A ¼ uAsAwT
A; (9)

where the subscript A ¼ V or A ¼ g denotes the

phase or group velocity, respectively.

To illustrate the usefulness of this approach,

we apply it to the second example from the pre-

vious section. Figure 2 shows the singular values

and eigenvectors of matrices FV and F g com-

puted for the P-, S1-, and S2-waves propagating

along the wavefront normal directions that be-

long to fan 8. An intuitive understanding that

our narrow-angle data constrain just the P-,

S1-, and S2-wave velocities in the vicinity of

θ1 ¼ θ2 ¼ 45° is corroborated by the presence

of a pronounced drop in the singular values after

the three greatest ones, which presumably corre-

spond to those velocities. A difference between

the third and the fourth singular values (approxi-

mately by a factor of 30) suggests that perhaps

only three stiffness combinations can be recov-

ered from noise-contaminated velocities. The

eigenvector matrices (gray squares), however,

indicate that all nine orthorhombic stiffness coefficients contribute

to these combinations, leading to an obvious ambiguity in the in-

version for cIJs: three equations cannot be uniquely solved for nine

unknowns.

As expected, Figures 2a and 2b look very similar because the

Frechét-derivative matrices FV and F g coincide in weakly aniso-

tropic media. Their identity for weak anisotropy follows from the

well-known equality VQðnÞ ¼ gQðrÞ, in which the group velocity is
evaluated along the ray direction r ≡ gQ∕gQ. Although the equality

FV ¼ F g is satisfied only approximately in moderately and

strongly anisotropic media, it allows us to restrict our further ana-

lysis to either matrix FV or F g. In practice, the choice of inverting

either phase or group velocities would depend on a particular data

processing goal. For example, a local slowness (reciprocal to the

phase velocity) component along a borehole can be always com-

puted from arrival times measured on a common-shot gather (e.g.,

Zheng and Pšenčík, 2002; Grechka and Mateeva, 2007). On the

other hand, the group velocities, needed to model the traveltimes,

are useful for estimating the effective medium properties, such as

those discussed in our field-data example below.

Performing the SVD for the phase velocities in the wavefront

normal fan 7 results in the singular values and eigenvectors dis-

played in Figure 3. This time, eigenvector matrix wV is quite sparse

and the elements of wV corresponding to c11, c55, and c66 are the

only significant entries in the first three columns that contain the

combinations of stiffness coefficients constrained by the three great-

est singular values. Thus, these coefficients can be unambiguously

estimated from the measured velocities. Although we foresaw such

an outcome in the previous section, the SVD provides additional

information. The high ratio of the third and the fourth singular va-

lues sV ;33∕sV ;44 ∼ 103 in Figure 3 suggests that nothing except for

c11, c55, and c66 can be estimated from the velocities contaminated

with any realistic noise.

Comparison of the SVDs in Figures 2 and 3 might lead one to

conclude that the ability to infer stiffnesses in anisotropic media

from the velocity measurements primarily depends on the direction

of wave propagation. In the next section, we show that this is not the
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Figure 2. Logarithms of normalized singular values (black dots) plotted on top of the
absolute values of elements of the eigenvector matrices w (gray squares) for phase (a)
and group (b) velocities. The rows ofw are arranged in the order of stiffness components
shown on the right. Each column of w is an eigenvector that corresponds to the singular
value (black dot) shown in that column. The black color of the squares denotes jwijj ¼ 1,
whereas white − wij ¼ 0; the color scale is linear. Computations are performed for the
stiffness matrix 5 and fanΩ of 25 wavefront normal directions defined by inequalities 8.
The directions are spaced at increments of 0.5° in both θ1 and θ2.
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case and certain stiffness coefficients can be always obtained in a

unique and robust fashion in a specially rotated coordinate system.

Solution

Here we discuss a coordinate transform designed to make many

elements of matrix wV close to zero for an arbitrary orientation of

narrow fan Ω of the wave-propagation directions. We choose the

matrix UT of our transform to be the transpose of the orthogonal

polarization vectors UQ of three isonormal waves propagating along

an arbitrarily selected wavefront normal n within Ω. Applying the

Bond transformation (e.g., Auld, 1973) with matrix UT to stiffness

tensor c produces tensor c 0 that generally has no zero elements

(Helbig, 1994) and appears as the one describing a triclinic solid

even when the original anisotropic medium has a higher symmetry.

Importantly, the polarization vectors U 0 after the transform,

U 0 ¼ UTU ¼ UilUjl ¼ δij; ði; j ¼ 1; 2; 3Þ (10)

are oriented along the new coordinate axes x 0
i , as is schematically

shown in Figure 4.

Phase velocity

The simplification expressed by equation 10 is critical for gaining

an analytic insight into which stiffness coefficients control the phase

and group velocities of plane waves propagating in direction

n 0 ¼ UTn: (11)

Indeed, according to the Christoffel equation 1, the squared phase

velocities are

V2
Q ¼ c 0QjkQn

0
j n

0
k; ðQ ¼ 1; 2; 3Þ; (12)

or, in expanded form,

V2
P ≡ V2

1 ¼ c 011ðn 0
1Þ2

|fflfflfflffl{zfflfflfflffl}

ðiÞ

þ ½2c 016n 0
1n

0
2 þ 2c 015n

0
1n

0
3�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

þ ½c 066ðn 0
2Þ2 þ 2c 056n

0
2n

0
3 þ c 055ðn 0

3Þ2�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

; (13)

V2
S1
≡ V2

2 ¼ c 066ðn 0
1Þ2

|fflfflfflffl{zfflfflfflffl}

ðiÞ

þ ½2c 026n 0
1n

0
2 þ 2c 046n

0
1n

0
3�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

þ ½c 022ðn 0
2Þ2 þ 2c 024n

0
2n

0
3 þ c 044ðn 0

3Þ2�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

; (14)

V2
S2
≡ V2

3 ¼ c 055ðn 0
1Þ2

|fflfflfflffl{zfflfflfflffl}

ðiÞ

þ ½2c 045n 0
1n

0
2 þ 2c 035n

0
1n

0
3�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiÞ

þ ½c 044ðn 0
2Þ2 þ 2c 034n

0
2n

0
3 þ c 033ðn 0

3Þ2�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

: (15)

Equations 13–15 are exact for plane waves. To reveal their signifi-

cance, we notice that in most anisotropic materials the P-wave

polarization vector deviates from the wavefront normal by a few

degrees; that is, n ≈ UP (e.g., Tsvankin, 2001). Hence, n 0 ≈ x 0
1 ¼

½1; 0; 0� 0 and the terms in equations 13–15 can be placed into groups

(i), (ii), and (iii) in accordance with their magnitudes expressed by

inequalities

jn 0
1j2 ≫ jn 0

1n
0
j j ≫ jn 0

j n
0
kj; ðj; k ¼ 2; 3Þ: (16)

Although the inequalities 16 might break down for extremely strong

anisotropy (Helbig and Schoenberg, 1987), they are expected to be

valid for typical anisotropic rocks encountered in the subsurface.

Combining equations 13–15 with inequalities 16, we conclude

that stiffness coefficients c 011, c
0
66, and c 055 are best constrained

by the P-, S1-, and S2-wave velocities in narrow-angle geometries.

These coefficients comprise group (i) in equations 13–15. This

1 2 3 4 5 6 7 8 9
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33
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Parameter combination
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 /
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Figure 3. The same as Figure 2a but for the wavefront normal fanΩ
given by inequalities 7.
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Figure 4. Coordinate rotation that aligns the new axes x 0
i with the

polarization vectors.
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finding is hardly surprising in light of our discussion in the previous

sections. Stiffnesses c 011, c 066, and c 055 are followed by six c 0IJs
grouped in (ii) in 13–15. All stiffnesses in groups (iii) in equa-

tions 13–15, except for c 055 and c 066 that already appear in (i), are

not as tightly constrained. The fourth group consists of six coeffi-

cients c 012, c
0
13, c

0
14, c

0
23, c

0
25, and c 036, which are not present in equa-

tions 13–15. For this reason, their estimation in the examined

geometries should be regarded as questionable.

The last statement might be better understood if we notice that

c 012, c
0
13, and c 023 are related to Tsvankin’s δ-coefficients that control

the P-wave normal-moveout (NMO) velocities in orthorhombic

media (Tsvankin, 1997; Grechka and Tsvankin, 1999). Because the

NMO velocities cannot be accurately estimated in our narrow fans

of wave-propagation directions, one might expect large errors in the

δ-coefficients and, consequently, in the stiffnesses c 012, c
0
13, and c 023.

A qualitative discussion above is, in fact, directly supported by

the SVD. Figure 5 shows the singular values and the eigenvector

matrix for the orthorhombic model given by equation 5 but per-

formed with respect to the Bond-transformed stiffness coefficients

c 0 with matrix

UT ¼

0

@

0.529 0.565 0.634

0.350 −0.825 0.444

0.774 −0.013 −0.634

1

A
; (17)

which is obtained from the polarization vectors of waves that have

the wavefront normal n ¼ ½1; 1;

ffiffiffi

2
p

�∕2. The rows of matrix wV in

Figure 5 are sorted to make the eigenvector matrix as diagonally

dominant as possible. Such a sorting is helpful because a diagonal

eigenvector matrix would be ideal for the inversion. Although

matrix wV in Figure 5 is not diagonal, it has a large number of zero

and nearly zero elements (compare with Figure 2), which imply that

information about each stiffness coefficient c 0IJ is concentrated in

the respective singular value and relatively little trade-off between

different c 0IJs is expected. The lower the position of a given c 0IJ on
the right-hand side of Figure 5, the less tightly it is constrained by

the data.

Let us note a staircase behavior of the singular values (dots in

Figure 5) predicted by equations 13–15. Indeed, the three greatest

singular values correspond to c 055, c
0
66, and c 011 in accordance with

equations 13–15. The next six parameter combinations in Figure 5

are dominated by the stiffnesses c 015, c
0
16, c

0
45, c

0
46, c

0
35, and c 026 that

appear in groups (ii) in equations 13–15. Their order depends on the

relative magnitudes of the wavefront normal components n 0
2 and n 0

3

and, thus, unimportant for our discussion. Although the exact num-

ber of c 0IJs that can be estimated from the velocities depends

on the noise level, the remaining 12 stiffnesses are unlikely to be

accurately recovered because the normalized singular values corre-

sponding to them are smaller than 10−3.

Because one’s ability of inferring certain stiffness components

significantly depends on the data aperture, it is important to inves-

tigate whether our previous assessment holds when solid angles of

the wavefront normal directions cover more than just a few square

degrees. To address this issue, we open up the data aperture by a

factor of approximately 100 (by increasing the ranges of both angles

θ1 and θ2 10 times) and repeat the previous numerical experiment.

The result in Figure 6 indicates that equations 13–15 keep predict-

ing the correct order of sensitivities of the phase velocities to c 0IJs,
even though the staircase behavior of the singular values (black

dots) disappears and their overall range gets smaller. Both those

features are expected because of the widening of the data aperture.

Group velocity

The use of polarization vectors expressed by equation 10 is espe-

cially beneficial for the group velocities. Transforming equation 2 to

the rotated coordinate frame yields
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Figure 5. Logarithms of normalized singular values (black dots)
and absolute values of the elements of eigenvector matrix wV (gray
squares) in a coordinate frame rotated with matrix 17. The rows of
wV are sorted to make it as diagonally dominant as possible. The fan
Ω of the wavefront normal directions is given by inequalities 8.
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Figure 6. The same as Figure 5 but for a fan of polar angles
θ1 and azimuths θ2 of the wavefront normalsΩ ¼ ½35° ≤ θ1 ≤ 55°;

35° ≤ θ2 ≤ 55°�.
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g 0
jQ ¼ c 0QjkQp

0
kQ; ðj;Q ¼ 1; 2; 3Þ; (18)

where p 0
Q ¼ n 0

Q∕VQ are the rotated slowness vectors. Introducing

the 3 × 3 symmetric positive-definite matrices

V 0
Q ≡ V 0

jkQ ¼ c 0QjkQ ðj; k;Q ¼ 1; 2; 3Þ; (19)

which are related to the so-called Voigt stiffness tensor V 0 (Cowin,
1989; Helbig, 1994) as V 0 ¼ P

3
Q¼1 V

0
Q, we rewrite equation 18 in

the form of a product of matrix V 0
Q and vector p 0

Q

g 0
Q ¼ V 0

Qp
0
Q; ðQ ¼ 1; 2; 3Þ: (20)

One can easily verify that the inverse relationship p 0
Q ¼ ðV 0

QÞ−1g 0
Q

is also valid.

To the best of our knowledge, equation 20 is the simplest exact

equation for the group velocities of plane waves propagating in

triclinic media. It turns out to be the most computationally efficient

too. Table 1 compares the cost of applying equation 20 with those of

other known equations. While the group velocities calculated with

various equations are numerically identical, the computational

expenses differ substantially. We see that equation 20 performs

particularly well when gQ of all three isonormal waves have to

be computed. This happens because transformation c → c 0 needs
to be applied only once. Even for a single wave mode, however,

equation 20 is superior to all its competitors. Although the issue of

the efficient calculation of the group velocities might seem insig-

nificant, we note that this computation comprises the innermost

core of any anisotropic ray-tracing code and, therefore, directly

influences the overall performance of all subsequent traveltime

calculations.

Like equation 12, which can be written in terms of matricesV 0
Q as

V2
Q ¼ n 0TV 0

Qn
0
; ðQ ¼ 1; 2; 3Þ; (21)

equation 20 leads to representation

g2Q ¼ p 0T
Q ðV 0

QÞ2p 0
Q ; ðQ ¼ 1; 2; 3Þ (22)

and results in analytic expressions of the group velocities similar to

those given by equations 13–15. We do not present these expres-

sions here because they are rather lengthy and entail the same

conclusions pertaining to the sensitivities of gQ to c 0IJs as those that
we have already discussed for the sensitivities of VQ.

Figure 7 exemplifies this statement. We performed the SVD for

the same fan of the wavefront normal directions as that in Figure 5

but used only two group velocities, gP and gS1 , to construct the

Frechét-derivative matrix F g. The absence of the slow shear-wave

data is evident in Figure 7. The stiffness coefficients contributing to

the singular values greater than 10−3 are exactly those that appear in

groups (i) and (ii) in equations 13 and 14. They are separated from

the rest of the stiffnesses in Figure 7 by a large drop in the singular

values (black dots), which likely divides the c 0IJs into those that can
and cannot be realistically recovered from the velocities.

INVERSION OF PHASE VELOCITIES

Having shown that inversion of the phase, VQ, and group, gQ,

velocities with respect to the stiffness coefficients needs to be

performed in a local coordinate frame, which relates to a given

narrow-angle data geometry, we proceed with estimation of these

stiffnesses. Because VQ and gQ depend on the stiffness components

in a similar manner (compare Figure 2a and 2b), we discuss inversion

of the phase velocities in this section and turn our attention to the

group velocities in the next section, wherewe examine our field data.

Here we compute the phase velocities in a narrow fan of the

wavefront normal directions (described in the caption to Figure 8),

add a 0.5% Gaussian noise to the velocity values and invert these

noise-contaminated velocities for the stiffness coefficients. An

important consequence of the fact that our velocities are inherently

incapable of constraining all elements of stiffness tensor c 0 is that
we have to devise a strategy for infilling the c 0IJs that cannot be in-
ferred from the available data. While several choices for such an

infill strategy exist (see the Discussion section), we opt for perhaps

the simplest one, which is to make c 0 as close to isotropy as possible
at each stage of the inversion. Appendix B describes the operational

details of our approach.

Table 1. Relative computing time spent on calculation of the
group velocities with various equations. The codes are
written in MATLAB; the computations are performed on a
single processor. The last two columns in the table
correspond to direct differentiation of the phase velocity V
with respect to the wavefront normal n and to computations
using equations B3 and B4 in Grechka et al. (1999), which
express g in terms of the slowness vector p and its
derivatives.

The number of
isonormal
waves Equation 20 Equation 2 g ¼ ∂V∕∂n g ¼ fðpÞ

1 1 1.6 2.8 3.0

2 1 1.9 4.0 5.3

3 1 2.1 5.0 7.5
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Figure 7. The same as Figure 5 but for the group, rather than phase
velocities, and when only the P- and fast S-waves are available.
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Our inversion procedure is organized as follows. We begin with

the SVD of the Frechét-derivative matrix constructed for a purely

isotropic model. The velocities in this model are unimportant

because the goal of this SVD is just to reveal a sequence of c 0IJs
that we then iteratively target in the least-squares, nonlinear,

gradient-based inversion. In this section, we use the same orthor-

hombic model as before (equation 5) so that the column of stiffness

elements on the right-hand side of Figure 8a represents the order in

which the c 0IJs are estimated in our first test. Next, we select the

number of stiffnesses to be obtained at the initial nonlinear iteration

of the inversion. Because the noise-contaminated velocities of all

three wave modes are used and the S-waves exhibit splitting, it

makes sense to honor it and invert the velocities for three best con-

strained stiffness coefficients c 066, c
0
55, and c

0
11. The inversion results

in 1.4% root-mean-square (RMS) error in the velocities (the left-

most dot in Figure 8b).

We use the estimated c 066, c
0
55, c

0
11 as an initial guess for the second

iteration of the nonlinear inversion, in which we add another

unknown c 015 (see the right-hand side column in Figure 8a) and

update all four stiffnesses. This inversion step yields a slightly

smaller RMS error (Figure 8b). We keep adding one stiffness coef-

ficient at a time, updating all relevant c 0IJs, and observing the reduc-
tion in the RMS error. At some point, specifically, after adding the

ninth stiffness coefficient, the RMS error reaches the level compar-

able to that of noise (0.5%) and does not significantly decrease any

further (Figure 8b). Our interpretation of such a behavior is that the

top nine c 0IJs in Figure 8a are sufficient to explain the data; when we
relax other stiffnesses, we start fitting the noise. Therefore, it is im-

portant to find out whether the nine stiffness coefficients result in a

satisfactory solution in the model space.

To do so, we calculate the Bond transformation of the exact ten-

sor c (equation 5) with matrix UT (equation 17)

c 0 ¼

0

B
B
B
B
B
B
@

10:869 5.216 6.596 1.136 0.492 −0.658

5.216 12:837 5.264 0.182 1.378 −1.909

6.596 5.264 11:409 0.451 0.698 1.634

1.136 0.182 0.451 2.353 −0.630 −0.374

0.492 1.378 0.698 −0.630 1.869 0.028

−0.658 −1.909 1.634 −0.374 0.028 4.664

1

C
C
C
C
C
C
A

:

(23)

This tensor is to be compared with the inverted stiffness tensor

(in km2∕s2)

c 0ðinvÞ ¼

0

B
B
B
B
B
B
@

10.885 4.335 4.335 0 0.427 −0.695
4.335 10:885 4.335 0 0 −1.847
4.335 4.335 10:885 0 0.648 0

0 0 0 3.275 −0.761 −0.240
0.427 0 0.648 −0.761 1.864 0

−0.695 −1.847 0 −0.240 0 4.686

1

C
C
C
C
C
C
A

:

(24)

The maximum error in the estimated stiffness components, which

are typeset in bold in matrix 24 to facilitate the comparison, is

0.13 km2∕s2 for c 045 and c 046. This result is certainly satisfactory.

Note that rotating tensor c 0ðinvÞ with matrix ðUTÞT ¼ U back to

the original coordinate frame would lead to greater errors. They are

caused by the optimal closeness of c 0ðinvÞ to isotropy and the

absence of this property in tensor c 0 (compare the upper-left

3 × 3 blocks in matrices 23 and 24).

In our second example, we use the same fan of directions but

remove the slow S-wave phase velocities from the data. Although

Figure 9a indicates a different sequence of c 0IJs than Figure 9b, our

inversion strategy remains the same. This time, the RMS errors

reach a plateau when the data are fitted with a model that contains

eight stiffness coefficients. A comparison of the model stiffnesses

(equation 23 with the estimated ones (in km2∕s2),

c 0ðinvÞ ¼

0

B
B
B
B
B
B
@

10.930 4.634 4.634 0 0.310 −0.780
4.634 10.930 4.634 0 0 −1.866
4.634 4.634 10.930 0 0 0

0 0 0 3.148 0 −0.327
0.310 0 0 0 1.669 0.415

−0.780 −1.866 0 −0.327 0.415 4.626

1

C
C
C
C
C
C
A

;

(25)

reveals overall greater errors with the largest being about

0.4 km2∕s2 for c 056.
Even though a higher uncertainty can be expected in the second

test because we use less data to infer the same model parameters as

those in the previous example, the obtained results are remarkable in

their ability to establish the presence of seismic anisotropy in our
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Figure 8. (a) SVD of the phase velocities of the P-, S1-, and
S2-waves in a fan of wavefront normal directions Ω ¼ ½40° ≤ θ1 ≤
50°; 40° ≤ θ2 ≤ 50°� and (b) behavior of the RMS velocity errors in
the course of inversion. Fan Ω contains 25 wavefront normal direc-
tions at increments 2.5° in both θ1 and θ2.
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narrow-angle geometry without relying on the shear-wave splitting.

We believe that this happens because of the data sensitivity to the

difference in slopes of the wavefront segments corresponding to the

P- and S1-waves. Once a medium homogeneity is assumed, aniso-

tropy provides the only plausible explanation for a misalignment of

portions of the wavefronts (or the phase-velocity surfaces) corre-

sponding to different wave modes.

In the next section, we show that the same logic would allow us

to establish and estimate seismic anisotropy from our field data

despite the velocity heterogeneity of the subsurface.

FIELD-DATA EXAMPLE

Here we apply the developed methodology to build an anisotropic

velocity model from perforation-shot data recorded at one stage of

hydraulic well treatment in a shale-gas play in the continental United

States. The shot-receiver geometry is displayed in Figure 10 in a local

coordinate frame whose origin is placed at the shallowest geophone.

Figure 10d shows the ray directions plotted on a unit sphere under the

assumption of the velocity homogeneity. The ranges of the polar ray

angles 31° ≤ θ1 ≤ 44° and the azimuths −150° ≤ θ2 ≤ −163° (from

east to north) clearly indicate a narrow-angle data geometry.

The recorded seismic traces are presented in Figure 11. We rotate

the original three-component (3C) data to project particle motions of

the direct P-waves (their times are marked with the red ticks) on the

first component (Figure 11a, 11c, and 11e). Next, we rotate

the remaining two components of data around this component to

enhance a wave that arrives next on the second component

(Figure 11b, 11d, and 11f). Because, by definition, the second com-

ponent is orthogonal to the first component, the wave whose travel-

times are shown with the blue ticks in Figure 11 is the direct shear

wave. After those two rotations, the third data component contains

little coherent energy (not shown), making it impossible for us to

determine whether the shear arrival is the fast S1- or slow S2-wave.

We interpret it as the S1-wave and acknowledge the implications

of our interpretation for the stiffness coefficients that we intend to

estimate.

In the following, we will be constructing a velocity model using

traveltimes tQ of the P- and (presumed) S1-waves. These traveltimes

were picked from the data (red and blue ticks in Figure 11) with a

precision of one time sample Δt ¼ 0.375 ms.

Isotropic velocity models

We begin building a seismic velocity model under the simplest

assumption that the subsurface is isotropic and homogeneous.

Therefore, our model has just two parameters: the P- and S-wave

velocities, VP;iso and VS;iso, respectively. To those we have to add the

origin times τi ði ¼ 1; 2; 3Þ of three perforations shots because the

shots were not timed. Fitting the traveltime picks in Figure 11 with

these five parameters results in the RMS traveltime misfit ΔtRMS ¼
0.810 ms. Even though it is significantly greater than the picking

precision Δt ¼ 0.375 ms, the issue of whether or not the obtained

homogeneous isotropic model is reasonable can be resolved based

on the values of the best-fit isotropic velocities VP;iso ¼ 2.870 km∕s

and VS;iso ¼ 1.993 km∕s. They yield the Poisson’s ratio

ν ¼
V2
P;iso − 2V2

S;iso

2ðV2
P;iso − V2

S;isoÞ
¼ 0.034; (26)

which is too low for any realistic subsurface rocks. Clearly, this

model should be deemed unacceptable on the grounds of rock

physics.

To understand what might have caused such a low Poisson’s

ratio, let us observe that the moveouts of direct arrivals in Figure 11

are close to straight lines (in fact, they are slightly curved, but the

curvatures are too small to see them clearly). Therefore, the move-

out slopes comprise the key data feature that has to be explained by

our homogeneous isotropic model. Because the well containing the

geophones is nearly vertical (Figure 10a, 10b, and 10c), the slopes

in Figure 11 are approximately equal to the vertical slowness

components

p3;P ¼ cos θ1;P

VP;iso

(27)

and

p3;S ¼
cos θ1;S

VS;iso

: (28)

It is important to note that two polar angles in equations 27 and 28

are equal

θ1;P ¼ θ1;S (29)
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Figure 9. The same as Figure 8 but when phase velocities of the
P- and S1-waves only comprise the data for inversion.
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for each shot-receiver pair because these angles are calculated in a

homogeneous isotropic model. Hence, the measured slopes p3;P and

p3;S relate to the velocity ratio as

p3;S

p3;P

¼ VP;iso

VS;iso

(30)

and can be used to estimate the effective Poisson’s ratio.

Table 2 lists the ratios of the moveout slopes picked from

perforation-shot gathers in Figure 11 and the Poisson’s ratios

calculated using equations 26 and 30. Clearly, the quoted value

ν ¼ 0.034 is close to an average Poisson’s ratio and, thus, is re-

quired to fit the data by a homogeneous isotropic model.

To make further progress and obtain a more satisfactory velocity

model, we have the following three options. First, we might keep

the assumption of isotropy and build a heterogeneous model. The

heterogeneity is supposed to bend rays in such a way as to break

down equations 29 and 30 while keeping the correct moveout slopes

and yielding physically reasonable Poisson’s ratios. Second, we

might maintain the homogeneity and evaluate the influence of

anisotropy on the obtained traveltimes tQ. And, third, we might

combine the two options above and allow our model to be both
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Figure 10. (a, b) Depth and (c) plan views of the locations of three perforation shots (stars) and eleven geophones (circles), and (d) directions of
straight rays plotted on a unit sphere.
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Figure 11. Records of perforation shots number 1 (a, b), 2 (c, d), and 3 (e, f). The 3C traces are rotated to enhance the direct P-waves on one
component (a, c, e) and the direct (presumably fast) S-waves – on another (b, d, f). Traveltime picks tQ of the P- and S1-waves are shown with
red and blue ticks, respectively.
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heterogeneous and anisotropic. Let us investigate these options

starting with the first.

Conventional velocity models for microseismic data processing

consist of isotropic horizontal layers (e.g., Pei et al., 2009, and

references therein). Rather than discuss our model of this kind, we

analyze those provided to us by microseismic service companies.

The first model, constructed by a service company that acquired

the data, is shown in Figure 12 (blue) along with the sonic logs

(black), which were used as soft constraints to seismic velocities.

Let us note that, to honor traveltimes of the perforation shots

(Figure 11), the P-wave velocity has been slowed down compared

to the sonic by about 700 m∕s in the depth range covered by the

geophones, that is, exactly in the interval in which the velocities are

constrained by the data.

If we take the model velocities (blue in Figure 12) and calculate

the Poisson’s ratios using equation 26, we obtain the blue staircase

line in Figure 13. It is to be compared with the Poisson’s ratios

(black) derived from the sonic logs in Figure 12. Clearly, the blue

staircase Poisson’s ratio exhibits the same problem that we experi-

enced with our homogeneous isotropic velocity model: the implau-

sible zero values in the depth range covered by the geophones.

Shell E&P Company has contracted another microseismic

service provider to reprocess the data. Its velocity model yields the

Poisson’s ratios shown in Figure 13 with a dashed green line. We

observe not only a “confirmation’’ of ν ¼ 0 in a portion of the inter-

val containing the geophones but also a layer at about 300 m depth

characterized by the negative Poisson’s ratio ν ¼ −0.05. Evidently,

the adopted assumption of isotropy fails to produce physically rea-

sonable velocity models.

Anisotropic models

Let us explore the second option and invert the perforation-shot

times tQ for a suite of homogeneous anisotropic models. In general,

we proceed the same way as we did in the section on inversion of

the phase velocities but with two obvious differences: we include

the origin times τi ði ¼ 1; 2; 3Þ of the perforation shots as additional
unknowns and use the Frechét derivatives relevant to the traveltime

inversion

F t ≡
∂tQ

∂c 0IJ
¼ −

tQ

gQ

∂gQ

∂c 0IJ
; ðQ ¼ 1; 2Þ; (31)

where derivatives of the group velocities ∂gQ∕∂c
0
IJ are given in

Appendix A. The stiffnesses c 0IJ relate to those in the global coor-

dinates in Figure 10 via the matrix
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Figure 12. Sonic logs (black) and a horizontally layered isotropic
velocity model (blue) built by a microseismic service company. The
circles and (overlapping) stars indicate the depths of the geophones
and perforation shots, respectively.
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Figure 13. Poisson’s ratios calculated using seismic velocities
shown in blue in Figure 12 (solid blue) and provided by a different
microseismic service company for the same data set (dashed green).
Thin black line is the Poisson’s ratio derived from the sonic logs in
Figure 12.

Table 2. Ratios of the moveout slopes p3;S∕p3;P picked from
seismic traces in Figure 11 and the Poisson’s ratios
calculated with equations 26 and 30.

Perforation-shot
number

Ratio of slopes
p3;S∕p3;P

Poisson’s
ratio

1 1.480 0.080

2 1.446 0.041

3 1.370 −0.070
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UT ¼

0

@

−0.569 −0.191 −0.800

0.590 0.583 −0.558

0.573 −0.790 −0.219

1

A
; (32)

which was derived from the polarization (or hodogram) analysis of

seismic data in Figure 11 and corresponds to the source-receiver

pair exhibiting the greatest linearity of the P-wave particle motion

(the linearity is defined by equation C-2 in Grechka and Matee-

va, 2007).

Figure 14a displays the results of the SVD of matrix F t con-

structed for the homogeneous isotropic velocity model discussed

in the previous section. (Note that full Frechét-derivative matrix

for the examined inverse problem contains F t augmented by deri-

vatives with respect to the origin times ∂tQ;j∕∂τi ¼ δij, where

i; j ¼ 1; 2; 3. The latter are excluded from the analysis presented

in Figure 14a.) As we gradually increase the number of stiffnesses

estimated by the nonlinear inversion, the traveltime misfit reduces

to levels below the sampling interval Δt ¼ 0.375 ms (horizontal

dashed line Figure 14b).

While there is some ambiguity about which anisotropic model

might be accepted as a solution, we note that such a model cannot

contain more than 15 uniquely determined parameters. The number

15 follows from a straightforward analysis of the perforation-shot

data. Indeed, the traveltimes in each shot gather in Figure 11 are

fully represented by six quantities: the origin time τi, the difference

between arrival times of the shear- and P-waves at any geophone,

two moveout slopes, and two moveout curvatures. Six constraints

per shot times three shots yield 18 constraints; three of which have

to be used to resolve the event-origin times τi. With these consid-

erations in mind, we choose the model described by 14 stiffness

coefficients. It has the RMS traveltime misfit ΔtRMS ¼ 0.361 ms,

which is just below the time sample, and the stiffness coefficients

(in km2∕s2)

c 0 ¼

0

B
B
B
B
B
B
@

8.136 1.803 3.742 0 −0.179 0.079

1.803 9.669 2.389 0 1.762 −0.025

3.742 2.389 9.669 0 −0.057 0.263

0 0 0 4.146 0 −0.129

−0.179 1.762 −0.057 0 3.623 0.067

0.079 −0.025 0.263 −0.129 0.067 3.916

1

C
C
C
C
C
C
A

:

(33)

There exist several ways of assessing whether the obtained stiff-

ness tensor is plausible. First, we compare its prediction of the ver-

tical velocities with the well logs. Although we realize that high

precision of these velocities cannot be expected because they have

to be calculated based on extrapolation of the inversion results by

more than 30° away from the recorded aperture, we nevertheless

apply matrix U (its transpose is given by equation 32) to rotate

tensor 33 to the geographic coordinates. This yields (in km2∕s2)

c ¼

0

B
B
B
B
B
B
@

9.350 1.923 1.960 1.003 −0.017 −0.401

1.923 10.359 3.171 0.047 0.049 0.381

1.960 3.171 9.526 0.173 −0.917 −0.499

1.003 0.047 0.173 2.937 −0.226 0.119

−0.017 0.049 −0.917 −0.226 3.874 −0.828

−0.401 0.381 −0.499 0.119 −0.828 3.993

1

C
C
C
C
C
C
A

(34)

and results in the P- and fast S-wave vertical velocities

VP ¼ 3.169 km∕s and VS1
¼ 2.074 km∕s, respectively. These

velocities are well within the intervals of variation of sonic logs in

Figure 12. As another qualitative check, one might calculate the

Poisson’s ratio corresponding to these VP and VS1
. Even though

using equation 26 for this purpose is not entirely appropriate

because the medium is anisotropic, such a calculation gives ν ¼
0.18, which is again a plausible value according to the log in

Figure 13. In addition, the relative deviation kc − cisok∕kck of

tensor c from its best-fit isotropic approximation ciso (computed

in the euclidian norm B1) of about 20% suggests an overall mod-

erate degree of seismic anisotropy, which is certainly expected in

our shale-gas field.

The model given by equation 34 can be also verified by using it to

find the locations of the perforation shots and compare them with

those obtained from an available well-deviation survey (the crosses

in Figure 15). To locate the shots, we define a rectangular grid in the

vertical planes specified by the average shot azimuths (see

Figure 10c) and treat each grid point ζ as a potential shot position.

We then calculate traveltimes tQ;iðζÞ þ τi ði ¼ 1; 2; 3Þ in our homo-

geneous triclinic model and post the RMS misfits ΔtRMSðζÞ
between these traveltimes and the times picked at Figure 11 at

each ζ. Figure 15 presents the result of our computation performed
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Figure 14. (a) Logarithms of normalized singular values st (black
dots) and absolute values of elements of eigenvector matrixwt (gray
squares) of the Frechét-derivative matrix F t (equation 31) for the
geometry shown in Figure 10 and (b) RMS errors of perforation-
shot times as a function of the number of estimated c 0IJs. The hor-
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on a square grid with the grid size Δζ ¼ 2 m. We accurately fit both

the traveltime picks (the maximum of ΔtRMS is 0.38 ms) and the

spatial positions of the perforation shots (the maximum deviation

of min ΔtRMS from the corresponding shot location is 2 m), which,

in retrospect, justifies our interpretation of the recorded shear

arrivals as the S1-waves. Clearly, comparison of the shot locations

disregards possible errors in the well-deviation survey, which might

not only influence the positions of crosses in Figure 15 but also bias

the estimates of stiffness coefficients in matrices 33 and 34 (Bulant

et al., 2007).

In summary, the obtained homogeneous anisotropic velocity

model satisfactorily describes the available perforation-shot times,

places the shots at their correct locations, and agrees with the well

logs. Our model contains 14 stiffness coefficients, which nearly

exhaust the maximum number of quantities that can be unambigu-

ously estimated. Thus, we conclude that introducing heterogeneity

is unnecessary to fit our field data.

DISCUSSION

The presented study had two main objectives. The first was to

ensure the uniqueness of inversion of seismic anisotropy. We

realized that the estimation of the elastic stiffness coefficients from

seismic velocities measured in narrow-angle geometries (which are

typical for downhole microseismic surveys) has to be performed

in a specially rotated coordinate frame to avoid ambiguity. We sug-

gested to select this frame by aligning its coordinate axes with the

polarization vectors of three plane waves propagating along any

direction within a given data aperture. This choice resulted in a

significant simplification of equations describing the phase and

group velocities in anisotropic media and made it possible to gain

analytic insights into which stiffness coefficients c 0IJ in the rotated

frame are constrained by the data (see equations 13–15).

It was natural then that we targeted these c 0IJs in the inversion.

Our numerical tests corroborated the analytic results and demon-

strated that, indeed, the accurate estimation of certain c 0IJs from

noise-contaminated seismic velocities is possible. Along the way,

we encountered an interesting problem of infilling the c 0IJs uncon-
strained by our data. It is quite obvious that some additional infor-

mation had to be brought in to assign numerical values to these

stiffness coefficients. We have chosen to draw this information from

the requirement that the inverted stiffness tensor c 0 is as close to

isotropy as possible. Clearly, this is not the only option. Other

options include approximating the symmetry of c 0 with either trans-
verse isotropy (TI) of orthotropy. Because TI and orthorhombic

media are characterized by more independent stiffness coefficients

than isotropy, they are expected to represent c 0 better. We have not

followed this path, however, primarily because it implies the avail-

ability of a priori knowledge of the medium symmetry. Although

the symmetry was certainly known in our synthetic examples, this

was not the case with the field data. For this reason, we decided to

leave the problem of finding the best TI or orthorhombic approx-

imation to an incompletely known stiffness tensor to a future study.

The second goal of our paper was to test the developed anisotro-

pic parameter-estimation methodology on field data. Although,

ideally, one would like to build a single, possible time-dependent,

model that explains perforation-shot and microseismic data

recorded in an entire survey (a more modest attempt is presented

in a companion paper by Grechka et al., 2011), here we followed

conventional practice, according to which velocity models for each
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Figure 15. Sections of ΔtRMS (in ms) for three perforation shots
(arranged from north to south) in the vertical planes specified by
the perforation-shot azimuths (Figure 10c). Calculations are per-
formed in the triclinic model given by equation 34. The size of color
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well-deviation survey.
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stage of hydraulic well stimulation are constructed using perforation

shots acquired at that stage. We managed to derive a homogeneous

anisotropic velocity model that fits the times of the P- and fast

S-waves picked from perforation-shot data in Figure 11 with the

RMS error smaller than one time sample in the data. Importantly,

our model predictions of the vertical velocities are consistent with

the available well logs. In contrast, either homogeneous or layered

isotropic velocity models examined in the paper exhibit unrealisti-

cally low or even negative Poisson’s ratios.

We conclude our paper by observing that anisotropic velocity-

model building for microseismic data processing is in its infancy.

While hundreds of authors discuss anisotropy in the context of seis-

mic reflection data, we are aware of only a few publications (Teanby

et al., 2004; Maxwell et al., 2006; Michaud et al., 2009) that

describe estimation of anisotropy for microseismic monitoring. This

makes us believe that a significant body of work needs to be done to

develop practical approaches for measuring seismic anisotropy in

microseismic geometries and using it to improve our knowledge

of the properties of hydraulically treated formations.

CONCLUSIONS

Our paper contains both theoretical and practical contributions.

On the theoretical side, we demonstrated how to estimate elements

of the elastic stiffness tensor from seismic velocities or traveltimes

measured in narrow-angle geometries. We showed that such an

inversion has to be performed in rotated coordinates to ensure its

uniqueness. In addition to identifying the stiffness components that

can be unambiguously inverted, we derived the equation for the

group velocities in generally anisotropic (triclinic) media that

happened to be computationally superior to many other known

equations.

Our practical contribution includes building a triclinic velocity

model from field perforation-shot data. The constructed model fits

the traveltime picks of the P- and fast S-waves within one time sam-

ple and resolves the issue with unrealistically low Poisson’s ratios

inherent for isotropic velocity models derived from the same

traveltimes.
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APPENDIX A

FRECHÉT DERIVATIVES OF SEISMIC
VELOCITIES

The goal of this Appendix is to derive the Frechét derivatives

FV ≡ ∂VQ∕∂cIJ and F g ≡ ∂gQ∕∂cIJ ðQ ¼ 1; 2; 3; I; J ¼ 1; : : : ; 6Þ
of the phase and group velocities VQ and gQ, with respect to the

stiffness components cIJ .

Derivatives of phase velocities

Because the phase velocities are calculated from the Christoffel

equation 1 in direction of the unit wavefront normal n, it is natural
to evaluate the derivatives ∂VQ∕∂cIJ at a fixed n. Following the

approach described in Zhou and Greenhalgh (2005), we rewrite

equation 1 in the form

V2
QUiQ ¼ cijklnjnkUlQ; ði;Q ¼ 1; 2; 3Þ (A-1)

and use the fact that the polarization vectors UQ are mutually ortho-

gonal, because they are the eigenvectors of equation A-1. Hence:

UQ · UR ¼ δQR; ðQ;R ¼ 1; 2; 3Þ; (A-2)

where δQR is the 3 × 3 identity matrix. Taking a dot product of

equation A-1 and vector UR yields

V2
QδQR ¼ cijklUiRnjnkUlQ; ðQ;R ¼ 1; 2; 3Þ: (A-3)

Next, we set R ¼ Q in equation A-3 and differentiate it with re-

spect to components of the stiffness tensor. The result reads

2VQ

∂VQ

∂ci 0j 0k 0l 0
¼ Ui 0Qnj 0nk 0Ul 0Q þ 2cijkl

�
∂UiQ

∂ci 0j 0k 0l 0

�

njnkUlQ;

ði 0; j 0; k 0
; l 0;Q ¼ 1; 2; 3Þ: (A-4)

To prove that the second term in equation A-4 vanishes, we note that

any derivative of UQ projects onto two orthogonal polarization

vectors UR1
, UR2

ðR1 ≠ R2 ≠ QÞ because UQ is a unit vector and

apply equation A-3. Therefore,

∂VQ

∂cijkl
¼ 1

2VQ

UiQnjnkUlQ; ði; j; k; l;Q ¼ 1; 2; 3Þ: (A-5)

The derivatives FV ¼ ∂VQ∕∂cIJ are obtained from those in

equation A-5 using the standard substitutions 11 → 1, 22 → 2,

33 → 3, 23 → 4, 13 → 5, and 12 → 6 for the pairs of indexes

of cijkl and the symmetry cIJ ¼ cJI of a Voigt stiffness matrix.

To account for this symmetry, the derivatives ∂VQ∕∂cIJ need to

be multiplied by ð2 − δIJÞ. We note that equation A-5 is inapplicable

to the S-waves at their point singularities nS, because the polariza-
tion vectors UQ ðQ ¼ 2; 3Þ are nonuniquely defined at n ¼ nS (e.g.,
Fedorov, 1968).

Derivatives of group velocities

To derive the Frechét derivativesF g ≡ ∂gQ∕∂cIJ , it is convenient

to start with the equality (e.g., Auld, 1973)

g · p ¼ 1; (A-6)

where g is the group-velocity vector, p is the corresponding slow-

ness vector, and the wave-type identifier Q ¼ 1; 2; 3 is omitted for

brevity. Defining the unit ray vector r through equation

g ¼ jgjr ≡ gr; (A-7)

we rewrite equation A-6 as

gðr · pÞ ¼ 1: (A-8)
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The reason for introducing vector r is that the most useful

derivatives ∂g∕∂cIJ are obtained at a fixed ray direction, that is,

∂g∕∂cIJ jr¼const. Indeed, such derivatives can be directly applied

to evaluate the Frechét derivatives of traveltimes (see equation 31)

because the latter correspond to stationary ray trajectories in accor-

dance with Fermat’s principle. With this in mind, we differentiate

equation A-8 with respect to cIJ

∂g

∂cIJ
ðr · pÞ þ g

�
∂r
∂cIJ

· p

�

þ g

�

r ·
∂p
∂cIJ

�

¼ 0;

ðI; J ¼ 1; : : : ; 6Þ:
(A-9)

Taking into account that the second term in equation A-9 vanishes

because r ¼ const and using equation A-8, we obtain

∂g

∂cIJ
¼ −g2

�

r ·
∂p
∂cIJ

�

; ðI; J ¼ 1; : : : ; 6Þ: (A-10)

To proceed further, we need to derive the Frechét derivatives

of the slownesses ∂p∕∂cIJ . Those are found by differentiating

the condition

Fðp; cÞ ≡ det½cijklpjpk − δil� ¼ 0 (A-11)

for the existence of nonzero eigenvectors of the Christoffel

equation. Applying the chain rule to equation A-11 yields

∂F

∂cIJ
¼ −

∂F

∂pi

∂pi

∂cIJ
¼ −

�

∇pF ·
∂p
∂cIJ

�

; ðI; J ¼ 1; : : : ; 6Þ;

(A-12)

where ∇pF is the gradient of F in the slowness space. Being the

gradient, ∇pF is orthogonal to the slowness surface given by equa-

tion A-11 and, hence, parallel to the group-velocity vector and ray r
(e.g., Auld, 1973; Helbig, 1994). The latter means that

∂F

∂cIJ
¼ −j∇pFj

�

r ·
∂p
∂cIJ

�

; ðI; J ¼ 1; : : : ; 6Þ (A-13)

and, as follows from equation A-10,

F g ¼
∂g

∂cIJ
¼ g2

j∇pFj
∂F

∂cIJ
; ðI; J ¼ 1; : : : ; 6Þ; (A-14)

where derivatives ∂F∕∂cIJ and gradient ∇pF are calculated by

differentiating determinant A-11.

Like equation A-5, equation A-14 cannot be used at point singu-

larities, where gradient ∇pF is undefined. Also equation A-14 is

expected to break down for rays rC corresponding to the tips of

cusps that are always present at the shear wave group-velocity

surfaces for symmetries lower than transverse isotropy. Indeed, a

general stiffness perturbation is expected to move a cusp in such

a way that rC would be placed either in a shadow zone or into a

volume in which gðrCÞ is multivalued.

APPENDIX B

ISOTROPIC APPROXIMATION OF INCOMPLETE
STIFFNESS TENSOR

Here we discuss how to find the best-fit isotropic stiffness tensor

ciso to a given tensor c when some elements of c are unknown. Our
analysis is based on the well-known Fedorov’s (1968) solution to

the same problem obtained under the condition that all components

of c are available. We revisit the result of Fedorov first and then

describe its appropriate modification.

Fedorov (1968) examines the problem of minimizing the

function

L ≡min
ðλ;μÞ

X3

i;j;k;l¼1

ðcijkl − cisoijklÞ2 (B-1)

in terms of the Lamé coefficients λ and μ that define ciso according
to equation

cisoijkl ¼ λδijδkl þ μðδikδjl þ δilδjkÞ; ði; j; k; l ¼ 1; 2; 3Þ;
(B-2)

where δij is the Kronecker delta. Substituting equation B-2 into

equation B-1 and switching to Voigt notation yields

L ¼
X3

I¼1

½cII − ðλþ 2μÞ�2 þ 2
X3

J;K¼1
J≠K

ðcJK − λÞ2

þ 4
X6

M¼4

ðcMM − μÞ2: (B-3)

The Lamé coefficients are found using the standard optimization

requirement

∂L

∂λ
¼ ∂L

∂μ
¼ 0; (B-4)

which leads to two linear equations for λ and μ. If values of all re-

levant stiffness coefficients are known, equations B-4 yield the sys-

tem

9λþ 6μ ¼
X3

I¼1

cII þ 2
X3

J;K¼1
J≠K

cJK ;

3λþ 12μ ¼
X3

I¼1

cII þ 2
X6

M¼4

cMM ; (B-5)

which was analyzed and solved by Fedorov (1968).

When some pertinent cIJs are unavailable, the corresponding

terms have to be removed from the least squares formulation

B-3 and derivatives in equations B-4 should be computed for the

new misfit function. If, for example, only c11, c55, and c66 can

be measured, as Figures 3 and 5 might suggest, then the equations

to be solved are

λþ 2μ ¼ c11; λþ 6μ ¼ c11 þ 2ðc55 þ c66Þ: (B-6)
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The solution of system B-6, λ ¼ c11 − ðc55 þ c66Þ and

μ ¼ ðc55 þ c66Þ∕2, is obviously different from that of system B-5.
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